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We show, using quantum field theory (QFT), that performing a large number of identical
repetitions of the same measurement does not only preserve the initial state of the wave
function (the Zeno effect), but also produces additional physical effects. We first discuss
the Zeno effect in the framework of QFT, that is, as a quantum field phenomenon. We then
derive it from QFT for the general case in which the initial and final states are different.
We use perturbation theory and Feynman diagrams and refer to the measurement act
as an external constraint upon the system that corresponds to the perturbative diagram
that denotes this constraint. The basic physical entities dealt with in this work are not
the conventional once-perfomed physical processes, but theirn times repetition where
n tends to infinity. We show that the presence of these repetitions entails the presence of
additional excited state energies, and the absence of them entails the absence of these
excited energies.
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1. INTRODUCTION

The problem of obtaining additional physical effects only because of multiple
repetitions of the same measurement or interaction has been discussed both ana-
lytically (Bixon, 1982; Giuliniet al., 1996; Harris and Stodolsky, 1981; Misra and
Sudarshan, 1977; Pascazio and Namiki, 1994; Peres, 1989, Peres and Ron, 1990;
Simonius, 1978), and experimentally (Cook, 1988; Itanoet al., 1990; Kofman and
Kurizki 1996; Kurizki et al., 1995; Wilkinsonet al., 1997). These phenomena,
in which one may preserve in time an initially prepared state or even “guide” its
time evolution to another final predetermined state (Aharonov and Vardi, 1980;
Facchiet al., 1999), in contrast to the known rules of quantum mechanics by which
the result of measurement cannot be known beforehand (Merzbacher, 1961), are
collectively termed quantum Zeno effect (Bixon, 1982; Cook, 1988; Giuliniet al.,
1996; Harris and Stodolsky, 1981; Itanoet al., 1990; Kofman and Kurizki, 1996;
Kurizki et al., 1995; Misra and Sudarshan, 1977; Pascazid and Namiki, 1994; Peres,
1989; Peres and Ron, 1990; Simonius, 1978). They were discussed exclusively at
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the level of either the Schroedinger equation (Aharonov and Vardi, 1980; Giulini
et al., 1996; Misra and Sudarshan, 1977), or by using the density matrix (Bixon,
1982; Harris and Stodolsky, 1981; Simonius, 1978). In this work we describe these
phenomena, using specific examples, in the context of quantum field theory. More-
over, it has been shown (Aharonov and Vardi, 1980), using the spin example, that
these repetitions not only preserve or guide to some predetermined state but also
may result in entirely new effects as will be explained. We show, using quantum
field theory, that this is indeed the case and not only in the spin case. We show
this for the two most discussed cases in relation to the many body problem in
quantum field theory (Mahan, 1993; Mattuck, 1976): (1) The many body system
in which the constituent particles are not interacting with one another, but are
submitted to an external potentialV , and (2) The many body system in which
the constituent particles are interacting with one another. In both cases the single
particle propagator can be represented by an infinite series from which we can
get the energies and the lifetime of the relevant system (Mahan, 1993; Mattuck,
1976). By “single particle propagator” we mean especially the specific Green
function iG+(k2, k1, t2− t1)t2>t1 which is the probability amplitude that if at the
time t1 we add a particle in stateθk1(r ) to the system in its ground state, then at
the timet2 the system will be found in its ground state with an added particle in the
stateθk2(r ) (Mattuck, 1976). The propagatoriG+(k2, k1, t2− t1)t2>t1 is termed the
“dressed” or “clothed” propagator to differentiate it from the free (bare) propagator
iG+0 (k2, k1, t2− t1)t2>t1 which has the same meaning of a probability amplitude as
that ofiG+(k2, k1, t2− t1)t2>t1, but with no perturbing interaction resulting from ei-
ther an external potential or from some interaction among the particles composing
the system.

We remark that the “clothed” propagator is conventionally estimated (Mattuck,
1976), (Mahan, 1993) by summing to an infinite order over some selective series
which is always characterized by the same basic diagram (from a very large num-
ber of possible diagrams) repeated to all orders. From the sum over this series one
derives physical results like the ground and excited energy states of the system
(Mahan, 1993; Mattuck, 1976). That is, the physical phenomena appear after sum-
ming to infinite order over this set of series of repetitions of the same diagram.
There exists a large number of examples corroborating this. The known Hartree
(Mahan, 1993; Mattuck, 1976) and Hartree-Fock (Mattuck, 1976), (Mahan, 1993)
quantum field realizations of physical phenomena are the results of summing to an
infinite order over only the same repeated diagram. That is, over only the bubble
terms (Mahan, 1993; Mattuck, 1976) in the first case, and over only the bubble
and open oyster terms in the second case (Mattuck, 1976). Likewise, the random
phase approximation method (RPA) is based upon summing over only the terms
called the ring terms (Mattuck, 1976). The basic phonon relations are derived
(Mattuck, 1964, 1976) from summing to an infinite order over only the same re-
peated (to all orders) process which represents the Einstein constant frequency
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phonon. The plasmon characteristics have been derived by summing over only the
“pair bubbles” terms (Mattuck, 1976). Even the two particle propagator is handled
by summing over only what is termed the ladder terms (Mattuck, 1976). For all
the above and many other cases this summing over the same repeated process
results in a new particle, the quasiparticle (Mattuck, 1976), with a characteris-
tic energy, an effective mass, and a finite lifetime. These infinite repetitions over
the same process dress the initial “bare” particle and transform it to another one
with different energy, mass, and lifetime. We will show in Section 3 that if we
have no repetitions then we have also no quasiparticles and no excited energy
states.

In the following we refer to the measurement process as a constraint that
is externally imposed upon the system so that the experiment corresponds to the
Feynman diagram that signifies this constraint. In such a way we may use the
formalism of the perturbative quantum field theory, and especially the summing
to all orders process, for discussing these experiments and their repetitions. Each
order of the perturbative sum, for example order 3 of the Feynman diagram that
denotes the bubble process, corresponds to performing three times the analogous
experiment that reproduce this process in the same time interval. Thus, the higher
order terms of the purterbative series correspond to repeating this experiment a
large number of times in the same given time interval which is the Zeno process.
That is, we may regard the higher order terms of the selective series of perturbative
QFT as corresponding to the Zeno processes of the experiment that reproduces the
interaction that is symbolized by the Feynman diagram related to this series. We
note that the same equivalence has enabled Aharonov and Vardi (1980) to assign
physical meaning to the Feynman paths.

Thus, according to the previous discussion, the starting point will not be
the general series which is not summable (Mahan, 1993; Mattuck, 1976), but a
selective series which is generally a series of only one process (from actually a
very large number of possible processes) and all its different orders. Here, in order
to emphasize this element of repetition and its essential role in the formation of the
Zeno effect (Bixon, 1982; Giuliniet al., 1996; Harris and Stodolsky, 1981; Misra
and Sudarshan, 1977; Pascazio and Namiki, 1994; Peres, 1989; Peres and Ron,
1990; Simonius, 1978), we discuss a special version of the last series in which the
terms of these series are not all the orders of the once performed relevant interaction,
but all the orders of the n times repetitions of it, as will be explained in the
following sections. Also, using the bubble and open-oyster examples we illustrate
the Aharonov–Vardi conclusion (Aharonov and Vardi, 1980), with respect to spin
rotations, that even when the physical mechanisms (potentials and interactions),
that cause the time evolutions of the physical systems, are absent, nevertheless, the
large number of repetitions of the “measurement” of the corresponding observables
induces this type of time evolution. In our case we obtain, by these repetitions, an
induced continuous spectrum of excited state energies in a finite interval.
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In Section 2 use is made of the vacuum amplitudeR(t) (Mahan, 1993;
Mattuck, 1976) and the unique nature of the Zeno effect (Aharonov and Vardi,
1980; Simonius, 1978) to show this effect for the bubble process (Mahan, 1993;
Mattuck, 1976), and for the general unlinked diagram withn identical links
(Mattuck, 1976). In Section 3 the Zeno effect is shown also for the case in which
the initial and final states of the system are different. This is demonstrated for the
specific open-oyster process (Mattuck, 1976), and for the general case of different
initial and final states of the system in which the amplitude has a value greater than
unity.

2. THE ZENO EFFECT OF THE BUBBLE PROCESS

The vacuum amplitude, as defined in the literature (see, for example, (Mahan,
1993; Mattuck, 1976)), takes into account all the various processes that lead from
the ground state, back to the same state. Here, in order to discuss the Zeno effect
(Aharonov and Vardi, 1980; Itanoet al., 1990; Misra and Sudarshan, 1977) which
is characterized by a large number of repetitions of the same process, we adopt a
restricted vacuum amplitude formalism that involves repetitions of only one par-
ticular process. As we have pointed out, the Hartree and Hartree-Fock procedures,
for example, belong to this category.

As mentioned, our basic diagram is then times repetitions of the process that
begins and ends at the same state, where in the limit of dense measurementn tends
to be a very large number. That is, this basic diagram is, actually, composed ofn
identical parts. Thus, the terms of the infinite series representing the vacuum am-
plitude must signify the different orders of this basicn-times-repeated interaction.
The first term of this infinite series is the free term when no interaction occurs
in the time interval (t − t0) (we specify the initial time byt0). The value of this
first term of the vacuum amplitude is unity (Mattuck, 1976), since it expresses the
fact that in the unperturbed case the probability amplitude for the quantum system
to stay in its ground state is unity. The second term denotes the basic diagram,
just described. The third term denotes the probablity when thisn-times-repeated
interaction is performed twice in the time interval (t − t0) etc. As an example for
this process we take the bubble interaction (Haken, 1981; Mahan, 1993; Mattuck,
1976) in which an external potential lifts the system at the timet out of its initial
statel creating a hole, and instantaneously puts it back in, destroying the hole. In
the energy-time representation the probability amplitude for the occurence of the
bubble process is given by (Mahan, 1993; Mattuck, 1976).

Lbubble(l , t) = −i
∫ t

t0

Vll G
−(l , t1− t1) dt1, (1)

whereVll is the external potential that transmits the system from the statel back
again to the same statel . Vll does not depends ont so it can be moved out of
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the integral sign in Eq. (1). The point correlation functioniG−(l , t1− t1) is the
probability amplitude that at the timet1 a hole in statel has been added and
instantaneously removed (destroyed) from the system in its ground state (Mahan,
1993; Mattuck, 1976). The value ofiG−(l , t1− t1) is−1 (see Mattuck, 1976). The
minus sign in Eq. (1) is for the fermion loop (Mattuck, 1976) of the bubble process.
The integration time fromt0 to t is the time it takes this process to occur. If this
bubble interaction is repeatedn times over the same total finite time (t − t0), we
obtain for the probability amplitude to find the system at timet to have the same
state it has at timet0 (Haken, 1981; Mattuck, 1976)

Ln
bubble(l , t) = (−i )n

∫ t

t0

Vll G
−(l , t1− t1) dt1

∫ t1

t0

Vll G
−(l , t2− t2) dt2

· · ·
∫ tn−1

t0

Vll G
−(l , tn − tn) dtn = (−i )n 1

n!

∫ t

t0

dt1

∫ t

t0

dt2

· · ·
∫ t

t0

dtnTD [G− · · ·G−]︸ ︷︷ ︸
n

Vn
ll (2)

whereTD is the Dyson time ordered product operator (Enz, 1992; Mahan, 1993;
Mattuck, 1976). The division byn! is because we take into account all the possible
orders of the timest1, t2, t3 . . . tn. Here eachiG− has the same constant value (of
−1 as we have remarked), so we obtain from the equation (2)

Ln
bubble(l , t) = 1

n!

(∫ tn

t0

dt(−iG−)Vll

)n

(3)

The last equation is the probability amplitude to find the system at the timet , after
it has been interacted uponn times by the same bubble interaction, to have the
same state it has at the timet0. Now, as we have mentioned we must take into
account all the possible orders of thisn times repeated interaction. If, for example,
this nth order interaction is repeated two, three, and four times over the same
finite total time (t − t0), we obtain for the relevant probability amplitudes (1

2! )
( 1

n! (
∫ tn

t0
dt(−iG−)Vll )n)2, ( 1

3! )(
1
n! (
∫ tn

t0
dt(−iG−)Vll )n)3, and (1

4! )(
1
n! (
∫ tn

t0
dt(−iG−)

Vll )n)4 respectively. The divisions by 2!, 3!, and 4! take into account the possible
time orders among thesenth order interactions (repeated two, three, and four times)
besides the extran! times permutations for each suchn times repeated interaction.
We note that since, as we have remarked, each suchnth order interaction is treated
asthe basic interactionitsn parts are not time permuted with then parts of any other
identical basic interaction. Repeating thisnth order bubble processn times, and
taking the former equations into account we obtain for the probability amplitude
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(denoted byP) to find the system in the timet to be in the same state it was in the
initial time t0.

Pn
bubble(l , t) = 1+ 1

n!

(∫ tn

t0

dt(−iG−)Vll

)n

+ 1

2!

(
1

n!

(∫ tn

t0

dt(−iG−)Vll

)n)2

+ 1

3!

(
1

n!

(∫ tn

t0

dt(−iG−)Vll

)n)3

+ · · ·

+ 1

n!

(
1

n!

(∫ tn

t0

dt(−iG−)Vll

)n)n

= 1+ Ln
bubble

n!

+ 1

2!

(
Ln

bubble

n!

)2

+ 1

3!

(
Ln

bubble

n!

)3

+ · · · 1

n!

(
Ln

bubble

n!

)n

(4)

We are interested in showing the existence of the Zeno effect in the limit of dense
measurement, that is, of a very largen. We obtain

lim
n→∞ Pn

bubble(l , t) = lim
n→∞

(
1+ Ln

bubble

n!
+ 1

2!

(
Ln

bubble

n!

)2

+ 1

3!

(
Ln

bubble

n!

)3

+ · · ·
)

= lim
n→∞exp

(
Ln

bubble

n!

)
= 1 (5)

That is, the probability to remain with the initial state after all these interactions
is unity which is the Zeno effect (Aharonov and Vardi, 1980; Giuliniet al., 1996;
Harris and Stodolsky, 1981; Itanoet al., 1990; Misra and Sudarshan, 1977; Peres
and Ron, 1990). We can generalize from the specific bubble interaction to a general
one. The only condition this general interaction has to fulfil is to start and end at the
same state, so that when it is repeatedn times, the resultingnth order diagram is
composed ofn unlinked identical links. Now, it is known (Mahan, 1993; Mattuck,
1976) that the value of an unlinked diagram withn unlinked linksL is Ln

n! , no
matter what is the character ofL. Thus, denoting our fundamental generalized
interaction byL, and repeating the same process, as we have done for the bubble
interaction, we obtain the following vacuum probability amplitudePzeno (to start
and end at the same state) in the Zeno limit

lim
n→∞ Pzeno(t) = lim

n→∞

(
1+ Ln

n!
+ 1

2!

(
Ln

n!

)2

+ 1

3!

(
Ln

n!

)3

· · · + 1

n!

(
Ln

n!

)n

+ · · ·
)
= lim

n→∞exp

(
Ln

n!

)
= 1 (6)

That is, the quantum Zeno effect may occur in the framework of quantum field
theory. This derivation is general in that we do not have to specify the fundamental
repeated interactionL.
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The same conclusion can also be obtained by considering the ground state
energy of the perturbed system which is obtained by using the vacuum amplitude
from Eq. (6). This ground state energy is obtained from the following relation,
known as the linked cluster theorem (Mattuck, 1976)

E0 = W0+ lim
t→∞(1−iη)

i
d

dt
(lnR(t)), (7)

whereW0 is the ground state energy of the unperturbed Hamiltonian corresponding
to the unperturbed ground stateθ0 which is assumed to be the initial state of the
system, andη is a positive infinitesimal such thatη ·∞=∞, andη ·C= 0 for
any finiteC. The limit t →∞(1− iη) means that first the value oft is set to
T(1− iη) and then we takeT →∞ (see Appendix C in Mattuck, 1976).R(t),
in our case, is thePZeno(t) from Eq. (6). One sees from the general linked cluster
expansion given, for example, by Mattuck (1976, p. 110) that the expansion (6)
results from including only the bubble contribution. Thus, substituting in Eq. (7)
for R(t) (PZeno(t) from Eq. (6)) we obtain (Mattuck, 1976)

E0 = W0+ lim
t→∞(1−iη)

i
d

dt

(
ln

(
lim

n→∞e
Ln

n!

)
= W0+ lim

t→∞(1−iη)
i

d

dt
(ln(1))= W0

(8)
Thus, we see that in the Zeno limit the initial energy (the initial state) is preserved.
This is true for any general processL, such that when repeatedn times the value of
its n unlinked parts diagram (we are restricted here to the vacuum amplitude case)
is Ln

n! . All we have to do is to use the generalPZeno(t) from Eq. (6), and Eq. (7).
The result we obtain is identical to Eq. (8).

All our discussion thus far of the bubble Zeno effect uses the vacuum ampli-
tude, and so is restricted to the case where the initial and final states of the system
were the ground state. We generalize now to any other state and take into account
explicitly the unperturbed propagators which connect neighbouring interactions.
Here also our basic unit is, because of the Zeno effect, then-times-repeated bub-
ble interaction. This general bubble process is now more natural than the former,
since each bubble interaction is naturally related to the former and to the following
identical ones by connecting paths which are the free propagatorsG+0 (l , t2− t1)
defined as the free propagation of the system from the timet1 to t2 without any
disturbance whatever. Thus, in order to accomodate to this situation we have to
multiply each fundamental bubble process given by Eq. (1) by the free propagators
G+0 (k, t1− t0) andG+0 (k, t2− t1), the first leads from the initial timet0 to the time
of the interactiont1 and the second fromt1 to the time after the interactiont2, so
that Eq. (1) would be written as

Lbubble(k, t) = −i
∫ t

t0

Vklkl G
+
0 (k, t1− t0)G+0 (k, t2− t1)G−(l , t1− t1) dt1, (9)

wherek is the initial and final state of each such fundamental bubble process. The
interaction is denoted now byVklkl that signifies that our system begins and ends
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at the same statek, creating and destroying a hole in statel (if the system interacts
only with an external potential then this interaction is denoted byVkk as is done for
the vacuum amplitude case).Vklkl is a probability amplitude that does not depend
on time and is given by (Mattuck, 1976)

Vklkl =
∫

d3rφ∗k (r )
∫
|φl (r̀ )|2V(r − r̀ ) d3r̀φk(r ),

andG− has the same meaning as in the former case. The free propagatorG+0 (k, t2−
t1) has the following value (Mahan, 1993; Mattuck, 1976)

G+0 (k, t2− t1) =
{
−i2t2−t1e

−i εk(t2−t1) for t2 6= t1
0 for t2 = t1

(10)

with

2t2−t1 =
{

1 if t2 > t1

0 if t2 ≤ t1

Substituting from Eq. (10) into Eq. (9) we obtain

Lbubble(k, t) = i
∫ t

t0

Vklkl e−i εk(t1−t0) e−i εk(t2−t1)G−(l , t1− t1) dt1 (11)

Now, since we deal with identical repetitions of the same interaction all theVklkl ’s
are the same. Also all theεk’s are, for the same reason, identical to each other.
Moreover, we can take also the time differences (tn − tn−1), especially for large
n, to be the same. Thus, taking these considerations into account, we write the
relevant modified form of Eq. (2) as follows

Ln
bubble(k, t) = (−i )n

∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

Vklkl · · ·Vklkl︸ ︷︷ ︸
n

G−(l , t1− t1)G−(l , t2− t2)

. . .G−(l , tn − tn) · e−i εk(t1−t0)e−i εk(t2−t1) . . .e−i εk(tn−tn−1) dt1 dt2 . . .dtn

= (−i )n(Vklkl)
n [G− · · ·G−]︸ ︷︷ ︸

n

∫ t

t0

∫ t1

t0

. . .

∫ tn−1

t0

· e−i εk(tn−t0) dt1 dt2 . . .dtn

= (Vklkl)
n
∫ t

t0

∫ t1

t0

. . .

∫ tn−2

t0

(
e−i εk(tn−1−t0)

−i εk
− 1

(−i εk)

)
dt1 dt2 . . .dtn−1

= (Vklkl)
n

(
e−i εk(t−t0)

(−i εk)n−1
− 1

(−i εk)n−1
− (t − t0)

(−i εk)n−2
− (t − t0)2

(−i εk)n−3
− · · ·

)

= (Vklkl)
n

(
e−i εk(t−t0)

(−i εk)n−1
−

n−1∑
m=0

(t − t0)m

m!(−i εk)n−1−m

)
(12)
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Here, we have taken (Mattuck, 1976) (−iG−) = 1. Expanding the exponent
e−i εk(t−t0) in a Taylor series we obtain from the last equation

Ln
bubble(k, t) = (Vklkl)

n
+∞∑
m=n

(t − t0)m

m!(−i εk)n−1−m
(13)

The left hand side of Fig. 1 shows then times repetitions of the bubble process
which is represented as a circle. These unconnected repetitions conform to Eq. (2).
The right hand side of the figure shows thesen times repetitions connected by
leading paths, and so they conform to Eq. (13).

We note that since what interests us in this work is the limit of very largen
of thesen-times repeated interactions, represented by equations (12)–(13) in this
section and Eq. (28) in the following one, thesen multiple interactions are to be
regarded as one connected unseparated process (see the discussion before Eq. (4))
and not as repetitions over improper self energy parts (Mattuck, 1976),2 so we
can use the following Dyson’s equation (Mahan, 1993; Mattuck, 1976) as we have
done in equations (18), (29), and (34).∫ t

t0

dt1 . . .
∫ tn−1

t0

dtn H1(t1) . . . H1(tn) = 1

n!

∫ t

t0

dt1 . . .
∫ t

t0

dtnTD[H1(t1) . . . H1(tn)],

(14)
whereTD is the Dyson’s time ordered product. The right hand side of Eq. (14) is
generally used because theH1’s do not commute. Here theH1’s take numerical
values (see equations (12), (13), and (28)), and so we do not have here any com-
mutation problems. Thus, theLbubble(k, t) from Eq. (11), for example, could have
been written and substituted in Eq. (12) as

Lbubble(k, t) = i
∫ t

t0

Vklkl e−i εk(t2−t0)G−(l , t1− t1) dt1 (15)

Note that for a general interaction, which is not of the bubble and open-oyster types
and so not of the kind that may be discussed in terms of the static or dynamic Zeno
effects (see the discussion after Eq. (24)), theH1 from Eq. (14) do not assume
numerical values and we have to take into account commutation relations. In this
case the basicn times repeated interactionLn will not assume the simple forms of
Eq. (13) or (28) that lead directly to the sought-for Zeno results (see Eqs. (18)–(20)
and (29)–(30)).

Now, we have to take into account all the possible orders of then times
repeated interaction process given by Eq. (13). For example, the second-order

2 The diagrams that represent repetitions over improper self energy parts can be separated into uncon-
nected self energy parts by removing the connecting particles lines. Generally, it is known (Mattuck,
1976) that such diagrams can not be summed over by using Dyson’s equation as we do below (see,
for example, equations (18) and (34)), since these improper diagrams would have to be counted more
than once (Mattuck, 1976).
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Fig. 1. The left hand side of the figure shows then times repetitions of the
bubble process which is represented as a circle. The right hand side shows
thesen times repetitions connected to each other by leading paths. The initial
and final times are denoted on the graphs.
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process, is

(
Ln

bubble

)2
(k, t) = (Vklkl)

2n
+∞∑
m=n

+∞∑
p=n

(t − t0)m

m!(−i εk)n−1−m

(t − t0)p

p!(−i εk)n−1−p
(16)

and thenth order process

(
Ln

bubble

)n
(k, t) = (Vklkl)

n2
+∞∑
m=n

+∞∑
p=n

· · ·
+∞∑
q=n︸ ︷︷ ︸

n

(t − t0)m+p+···+q

(m! p! · · ·q!)︸ ︷︷ ︸
n

(−i εk)n2−n−(m+p+···+q)
,

(17)
where the expression (m+ p+ · · · + q) containsn terms. We want to demonstrate
the Zeno effect in the dense measurement limit, that is, for very largen. So,
repeating thisnth order bubble interaction to all orders, taking the former equations
into account, adding and subtracting 1, and using the Dyson’s equation we obtain
for the probability amplitude to find the system at timet in the same state it was
at the initial timet0 (compare with Eq. (5))

lim
n→∞ Pn

bubble(k, t) = lim
n→∞

(
L free

bubble− 1+ 1+ Ln
bubble+

(
Ln

bubble

)2
· · · + (

Ln
bubble

)n + · · · = lim
n→∞

(
L free

bubble− 1+ 1

1− Ln
bubble

)
= L free

bubble (18)

The last outcome is obtained by using the last results of Equations (12) and (13)
from which we obtain limn→∞ Ln

bubble= 0. L free
bubble is the probability amplitude

to begin and end at the same state without any interaction. This no-interaction
process, like the basic bubble interaction discussed here, is ann-times-repeated
process. That is,L free

bubble is then times repetitions of the free propagator given by
Eq. (10), so that the time allocated for each is(t−t0)

n . Thus,L free
bubble, with the help

of Eq. (10) and in the Zeno limit wheren→∞, is

L free
bubble= lim

n→∞
(
(−i ) e−

i εk (t−t0)
n
)n = lim

n→∞(−i )n e−i εk(t−t0) (19)

From equations (18)–(19) we obtain for the Zeno limit of the probability of the
bubble process ∣∣L free

bubble

∣∣2 = 1 (20)

That is, in the limit of the Zeno effect we obtain for the bubble process, when it
is represented by either Eq. (1) (in the vacuum amplitude case) or by the more
general Eq. (9), a probability of unity to begin and end in the same state.

We must again note that taking into account only the bubble process, from the
large number of possible different processes, is the earlier Hartree method (Enz,
1992; Mahan, 1993; Mattuck, 1976) of dealing with the interacting many body
system. But unlike this Hartree point of view in which the bubble interaction is
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taken once to all orders, here in order to emphasize the important role of these
identical repetitions to the Zeno effect this bubble interaction is takenn times to all
orders wheren→∞. Now, we discuss the other (excited) states of the system. The
conventional procedure that yields the excited state energies is to find the poles
of the propagatorG+bubble(k, w) (Mattuck, 1976) which is the Fourier transform
of the propagatorG+bubble(k, t). The last propagator is the probability amplitude to
find the system at the timet , after interaction, in the same state it has started from
at the timet0, and it is, for the Zeno process, no other than thePn

bubble we found
in Eq. (18). Thus, we must transform this equation from the (k, t) representation
to the (k, w) one. We do this by finding the (k, w) representation ofL free

bubble from
Eq. (19) using the Fourier transform method

L free
bubble(k, w) = lim

n→∞

(
(−i )

∫ +∞
0

d

(
t − t0

n

)
e−

i εk (t−t0)
n e

iw(t−t0)
n

)n

= lim
n→∞

((
− e

i (w−εk+i δ)(t−t0)
n

(w − εk + i δ)

)∣∣∣∣+∞
0

)n

= lim
n→∞

(
1

(w + i δ)− εk

)n

(21)

Theδ in the exponent comes from multiplying bye−
δ(t−t0)

n , whereδ is an infinites-
imal satisfyingδ ·∞=∞, andδ · c= 0, (c is a constant) (Mattuck, 1976). We do
this in order to remain with a finite result for this exponent when (t − t0)→∞.
TheL free

bubble(k, w) is then times repetitions of the free propagatorG+0 (k, w) which
is the (k, w) representation ofG+0 (k, t2− t1) from Eq. (10). We are interested in
the limit of very largen, and as seen from Eq. (21) whenn→∞we, actually, have
a pole for each value ofw that satisfies|w− εk|< 1, that is,εk− 1< w < εk+ 1.
There are no excited energies outside this range. We note that in the many body
interaction picture the excited energyεk is equal to (Mattuck, 1976) the difference
between the excited state energy of the interactingN+ 1-particle system and the
ground state of the interactingN-particle system. Thus, if the bubble process is
performed once and the selective series of this once performed process is summed
to all orders, as in the Hartree method, one obtains excited state energies at the
value given by Eq. (23). But when this bubble process is repeatedn times and
the selective series of thisn-times repeated process is summed to all orders, as
we have just done in equation (12)–(18), we obtain from Eq. (21) excited state
energies for all values ofw that satisfy|w− εk|< 1. That is, we obtain a large
number (continuum) of extra excited energies that has been addedonly because
of these identical repetitions of the same bubble process. This mechanism of ob-
taining physical results as a consequence of just repeating the same process which
by itself, without these repetitions, does not yield these results has already been
noted in (Aharonov and Vardi, 1980) in connection with rotations that occur only
because of a large number of repetitions of the same measurement. Speaking in
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terms of quasiparticles (Mattuck, 1976) we can write the (k, w) representation of
Pn

bubble(k, t) from Eq. (18), using Eq. (21), as

lim
n→∞ Pn

quasiparticle(k, w) =
(

1

(w + i δ)− εk)

)n

(22)

(δ)−1 is the lifetime of the quasiparticle, and sinceδ is small (δ)−1 is very large,
so these quasiparticles with the extra excited energies just mentioned have a very
large lifetime. We must note that the relevant excited state energieswpole obtained
when the bubble process is performed once and the selective series of this once
performed process is summed to all orders is just the Hartreewpole(Mattuck, 1976).

wpole= εk + Vklkl − i δ (23)

When the bubble process is repeatedn times, then as can be seen from equations
(13), (18)–(19), and (21)–(22) thewpole’s obtained do not depend on any potential
V . This, as we have remarked, is in accord with the Aharonov–Vardi conclusion
(Aharonov and Vardi, 1980) that the physical mechanisms that trigger the time
evolutions of the system do not play an essential role, since the mere large number
of repetitions of the same measurement is the cause of this time evolution. We
note that Aharonov and Vardi show this for the spin1

2 particle example, but it is
obvious from their representation that this conclusion is a general one. We have
shown this for the bubble process for which a large number of repetitions results
in excited energies that do not depend upon any potential. We show in the next
section that if we have no repetitions then we do not have any excited energies.

In summary, we find that when the interaction involved does not end at the
same state it has began from and if it is not repeated then no excited state results
from such an interaction (see Eqs. (31)–(32) in the next section and the discussion
that follows). If this interaction begins and ends at the same state as in the Hartree
model then a single polew= εk+Vklkl is found (see Eq. (23)). And when this
interaction is repeatedN times then in the limit ofN→∞ one find a continuum
of poles (cut) for all values ofw that satisfy|w− εk|< 1, whereεk is the energy
by which the involved system propagates during the interaction. That is, as has
been remarked in (Aharonov and Vardi, 1980) the large number of repetitions
produces new stable physical effects (see also Eq. (22) and the discussion that
follows it) that do not appear in the absence of them. And the larger the number
of these repetitions on the same time interval, as in the discussion here in which
the repeated interaction is not taken by itself but by itsN time repetitions where
N→∞, the larger is the new stable physical effect as the cut found here (see
Eqs. (21)–(22) and the relevant discussion there) instead of the single pole of the
Hartree model. We note that the quasiparticles related to these poles have a very
long lifetime so that once they are formed they do not decay fast.
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3. THE ZENO EFFECT AND THE OPEN-OYSTER PROCESS

We, now, show that we can apply the Zeno effect (Aharonov and Vardi, 1980;
Facchiet al., 1999; Itanoet al., 1990; Misra and Sudarshan, 1997; Simonius, 1978)
also for the general case, where the system ends at the timet in some specific state
which is not identical to the initial one from which it has started at the timet0. In
this context we do not use the standard Zeno effect at a state (where the system
returns to the same state it has started from), as discussed in the previous section,
but apply a Zeno effect along some definite Feynman path of possible states in
the sense of Aharonov and Vardi (Aharonov and Vardi, 1980). That is, if we do
dense measurement along any definite Feynman path of states then we make it
actual in the sense that its probability amplitude is unity. Here we begin at some
predetermined initial state and end at another predetermined final one. This aspect
of the quantum Zeno effect in which the evolution of the relevant quantum system
is guided, by means of dense measurement, to the corresponding prefixed final
state is termed in (Facchiet al., 1999) the dynamical quantum Zeno effect, in
contrast to the usual quantum Zeno effect (in which the system starts and ends at
the same state) which is termed in (Facchiet al., 1999) the static quantum Zeno
effect.

The propagator in this general case is the probability amplitude that if the
system begins at the initial timet0 in a specific state, then it will be found at another
specific one at the later timet . As in the former section, in order to emphasize
the important role of repetitions for the Zeno effect, the basic diagram is then
times repetitions of this interaction, where in the limit of dense measurementn
becomes very large number. Thus, the terms of the infinite series representing the
propagator signify the different orders of thisn-repeated-interaction. In this case
the repetitions is along some definite path connecting the initial and final states,
and not local repetition as in the bubble example.

We choose, as in the bubble case, some example that may be described from
two points of view. One is the situation when the interaction is triggered by an
external potential that actsn, 2n, 3n times etc. The other, more natural, interac-
tion is that caused by the correlations between different particles that comprise
the system. Unlike the bubble case, in both points of view there must be a con-
necting path between any two neighboring interactions since they are not iden-
tical to each other, as will be explained in detail later. Here the initial state of
each such interaction is not identical to the initial state of the former one,but to
its final state. The only difference between the external potential situation and
the correlation-between-particles one is in the character of the interaction which
in the former case is denoted byVkl , that is, a particle that begins at statek is
interacted upon by an external potential that changes its state to that ofl (com-
pare with the external potential situation of the bubble case in which a particle
begins and ends at the same state, and therefore the external potential is denoted
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by Vkk). In the correlation-between-particles situation this interaction is denoted by
Vlkkl (Mattuck, 1976; compare with theVklkl of the correlation-between-particles
situation of the bubble case).

A fundamental interaction in which the system ends at the timet in a state
different from the one with which it has started from at the initial timet0 is,
for example, what is termed the open-oyster diagram (Mattuck, 1976). We must
remark that this interaction is calculated to be (Mattuck, 1976) as one in which the
particle that left the interaction site at the later timet is in the same statek with
which another particle enters the interaction site at the initial timet0. Nevertheless,
we discuss here another version of this interaction in which the particle that leaves
the interaction site at the timet is in the statel > k , and not in the initial onek.
We also call this interaction open-oyster. In the external potential version of this
interaction an incoming particle at statek enters the potential region at the time
t0. Then at timet the potential knocks another particle out of the statel1 into
statel , thus creating a particle in statel , and a hole in statel1. At the same timet
the particle ink is knocked into the hole inl1, and thus annihilated with it. The
particle in l continues propagating out of the potential region. This process is
referred to as an exchange scattering (Mattuck, 1976), compared to the forward
scattering of the bubble process in which the particle emerges in the same direction
(i.e, momentum state) as it has entered. On the right hand side of Fig. 2 we see this
open-oyster interaction, and on the left hand side of it we seen times repetitions of
this process over the same time interval (t − t0). In the energy-time representation
the probability amplitude for the occurence of the open-oyster process is given by
(Mahan, 1993; Mattuck, 1976):

Lopen-oyster(k, t) = i
∫ t

t0

VlkG−(l1, t1− t1)G+0 (k, t1− t0)G+0 (l , t2− t1) dt1 (24)

The difference between the bubble process that may represent the static Zeno effect
(Aharonov and Vardi, 1980; Facchiet al., 1999) (when repeated a large number
of times), and the open-oyster process, that may be regarded as an example of
the dynamic Zeno effect (Facchiet al., 1999) (when performed many times), can
be understood in the following way (Aharonov and Vardi, 1980; Facchiet al.,
1999): Suppose we have a family of states denoted asφk, wherek= 0, 1, 2,. . .n,
such thatφ0=ψ(0), whereψ(0) is the initial state of the quantum system. We
assume that successive states differ infinitesimally from one another, so that we
have〈φk+1|φk〉≈1. Denoting, as before, the total finite time of then repeated
interactions by (t − t0), and the time it takes to perform each such interaction byδt
we haveδt = (t−t0)

n . Now, the open-oyster interaction may be regarded as, actually,
projecting the evolving wave function at the timetk= kδt on the stateφk. So when
n becomes very large in the limit of the Zeno effect we obtain actuallyψ(t)=φn.
This is the dynamic Zeno effect of (Aharonov and Vardi, 1980; Facchiet al., 1999).
The static Zeno effect is the special case whenφk=φ0=ψ(0) for all k.



P1: GUB

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465831 June 17, 2003 9:23 Style file version May 30th, 2002

458 Bar

Fig. 2. The right hand side of the figure shows the fundamental open-oyster process, and
the left hand side shows this process repeatedn times over the same time interval.

If we describe this process in terms of the correlation between the different
particles of the system then in this interaction an incoming particle in statek
performs in a simultaneous manner several tasks; (1) it strikes another particle
from statel1 to statel , (2) creates a hole inl1, (3) is annihilated with the hole inl1,
and the particle inl leaves the system. The open-oyster interaction is written now
as

Lopen-oyster(k, t) = i
∫ t

t0

Vlkkl G
−(l1, t1− t1)G+0 (l1, t1− t0)G+0 (l , t2− t1) dt1

(25)
Now, since the last two equations (24) and (25) are identical to each other, except
for the subscripts of the potentialV , we concentrate our attention on Eq. (25) with
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the understanding that what we say about it holds also for Eq. (24).Vlkkl denotes the
interaction just described, and theG+0 ’s are the free propagators given by Eq. (10).
We must note again that the successive repetitions of the open-oyster interaction,
required for the discussion of the dynamic Zeno effect, are not characterized as
being identical to each other, as in the bubble process, but that each such funda-
mental interaction begins from the point (state) in which the former interaction
ends. Thus, we have to take into account the path that connects each two such
neighbouring interactions. This connecting path is, of course, the free propagator
G+0 (k, t − t1). Substituting now from Eq. (10) into Eq. (25), and assuming that
Vlkkl does not depend ont we obtain

Lopen-oyster(k, t) = −i
∫ t

t0

Vlkkl G
−(l1, t1− t1) e−i εk(t1−t0) e−i εl (t−t1) dt1

= Vlkkl e−i (εl t−εkt0) e−i (εk−εl )t − e−i (εk−εl )t0

−i (εk − εl )

= Vlkkl
e−i εk(t−t0) − e−i εl (t−t0)

−i (εk − εl )
(26)

Where we have used the value of 1 for−iG−(l1, t1− t1). Using Eq. (25) we write
for thenth order open-oyster process

Ln
open-oyster(k, t) =

∫ t

t0

∫ t1

t0

∫ t2

t0

. . .

∫ tn−1

t0

Vk1kkk1Vk2k1k1k2 . . .Vkl kn− 1kn− 1kl .

· e−i εk(t1−t0) e−i εk1(t2−t1) e−i εk2(t3−t2) . . .e−i εkn−1(tn− tn− 1)e−i εkl (t−tn).

· dt1 dt2 dt3 . . .dtn = (V)n e−i (εkl t−εkt0)
∫ t

t0

e−i (εk−εk1)t1 dt1.

·
∫ t1

t0

e−i (εk1−εk2)t2 dt2

∫ t2

t0

e−i (εk2−εk3)t3 dt3

· · ·
∫ tn−1

t0

e−i (εkn−1−εkn )tn dtn, (27)

where we have assumed that for largen all the potentials that transfer the system be-
tween two neighbouring states are equal to each other, that is,Vk1kkk1 =Vk2k1k1k2 =
· · · =Vlkn−1kn−1l = V . Carrying out then integrals of the last equation we obtain
an expression with 2n−1 terms, each of which is a fraction with a numerator that is
a difference of exponentials in the energiesεki ’s multiplied by the timesti , and the
denominator is a multiplication ofn different factors. This 2n−1 terms expression
can be grouped inton different groups in which the number of terms are arranged
as 1+∑i=(n−2)

i=0 2i . All the terms of the same group have the same numerator up to
a sign, but a different denominator, so we can reduce the number of all the terms of
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each group to 1 by taking the common denominator of all the terms that belong to
the same group. In such a way the total number of terms of the original expression
is reduced from 2n−1 to n. Thus, we obtain

Ln
open-oyster(k, t)

= (V)n
(m=n−1)∑

m=0

(−)l
(
e−i (εk+εkn−εkn−m)(t−t0) − e−i εkn (t−t0)

)
(−i )n

∏(i=n−(m+1))
i=0

(
εki − εkn−m

)∏(i=n−1)
(i=n−m)

(
εkn−m − εki+1

)
(28)

It can be seen that all then numerators of the last equation are differences of
sines and cosines, whereas each one of the correspondingn denominators is a
product ofn factors that are differences of energies. Whenn is very large, which
we always assume in this work, we haveεki ≈ εki+1 (since neighbouring states differ
infinitesimally), so in this limit we have at least two factors in each denominator
that tend to zero. Thus, although all then terms of Equation (28) are multiplied by
the factorVn (V is a probability amplitude that satisfies 0≤V ≤ 1) we obviously
have limn→∞ Ln

open-oyster= ∞.
We are interested, as in the bubble case, in the repetitions to all orders of

Ln
open-oysterfrom Eq. (28). Beginning from this equation it is not hard to obtain

the various orders ofLn
open-oyster. So, if we take the infinite series (that denotes the

various orders of then repetitions processLn
open-oyster), adding and subtracting 1,

and taking the relation limn→∞ Ln
open-oyster= ∞ into account we obtain, using the

Dyson’s equation, for the general probability amplitude in the Zeno limit

lim
n→∞ Pn

open-oyster(k, t) = lim
n→∞

(
L free

open-oyster+ 1− 1+ Ln
open-oyster

+ L2n
open-oyster+ · · ·) = lim

n→∞

(
L free

open-oyster− 1

+ 1

1+ Ln
open-oyster

)
= lim

n→∞ L free
open-oyster− 1 (29)

L free
open-oysteris the amplitude for our system to begin in some specific initial state
φk at the timet0, and end in another different stateφl at the timet without any
interaction whatever on our system. This no-interaction process is obviously zero
if the final state is different from the initial one (see, for example, Mahan, 1993;
Mattuck, 1976), so we obtain for theprobabilityof the open-oyster process in the
Zeno limit

lim
n→∞

∣∣Pn
open-oyster

∣∣2 = 1 (30)

Thus, we see that in this limit we obtain for the open-oyster process a probability
of unity to end at a specific prescribed state different from another specific initial
one.
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We now show that we have no excited state energies for the open-oyster
process in the Zeno limit. For this purpose we must find, in this limit, the poles of
the propagatorPopen-oyster(k, w) which is the Fourier transform of the propagator
Popen-oyster(k, t) given by Eq. (29). Thus, using the Fourier transform procedure,
multiplying by e−δ(t−t0) (Mattuck, 1976), and using limn→∞ L free

open-oyster= 0 we
obtain

lim
n→∞ Pn

open-oyster(k, w) = −
∫ ∞

0
d(t − t0) ei (w+i δ)(t−t0) = 1

w + i δ
, (31)

where theδ is, as in Eq. (21) (see the discussion after Eq. (21)), an infinitesimal
quantity that satisfiesδ ·∞=∞, andδ · c= 0, wherec is some finite number. This
δ has been introduced in order to have a finite result for the exponent of Eq. (31) in
the limit (t − t0)→∞ (see Appendix I in (Mattuck, 1976)). From the last equation
we obtain that the poles of limn→∞ Pn

open-oyster(k, w), which are the excited energy
states of the physical system are

wopen-oyster
pole = 0 (32)

That is, there exists no excited energy states in the Zeno limit of the open-oyster
process. The reason, as we have remarked, is the absence of local repetitions in the
version we have adopted here for the open-oyster process. That is, we discuss here
a process in which the state of the particle that leaves the system is different from
the state of the one that enters. And when this process is repeated the initial state of
the entering particle in the repeated process is the final state of the leaving particle
in the former one. Thus, this process is not locally repeated, and this absence of
repetitions entails the absence of excited states for the system. That is, all the
energies of theN+ 1-particle system are equal, in the Zeno limit, to each other
and to the ground state energy of theN-particle system (see Mattuck, 1976, p.
41). In contrast to this situation, when we have local repetitions of some process,
then we have excited states of the physical system. That is, if the selective series
of this process is composed of repeated to all order terms like the Hartree selective
series of the bubble process, then excited states are obtained (see Eq. (23)). Many
more additional excited states are obtained when this summation to all orders is
over then-times repetitions of this process as we have obtained for the bubble
process in the former section (see Eq. (21)). Now, if we discuss this open-oyster
process from the conventional point of view (Mattuck, 1976) where the energy of
the leaving particle is the same as that of the entering one, and the summation to all
orders is over the once-performed open-oyster process and not over thenth times
repetitions of it, then we obtain for thewpole (Mattuck, 1976)

wpole= εk + Vlkkl − i δ, (33)

whereVlkkl is the physical interaction that generates this open-oyster interaction.
That is, the excited state energies of the system are determined by these repetitions,
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as has been remarked in (Aharonov and Vardi, 1980) (see the discussion after
Eq. (21))

We must note that the result of Eq. (30) is obtained not only for the open-
oyster case, but also for any other arbitrary interaction for which the amplitude
M to ends in a specific state different from the initial one satisfiesM > 1. If we
denote the propagator (the full propagator, not the free one) of such interaction
by PZeno, its free propagator byPfree, and adding and subtracting 1 the propagator
takes the following form

lim
n→∞ Pzeno= lim

n→∞
(
Pfree− 1+ 1+ Mn + M2n + M3n + · · · )

= lim
n→∞

(
Pfree− 1+ 1

1− Mn

)
= −1 (34)

In obtaining the result of Eq. (34) we made use of the facts thatPfree= 0, and
M > 1 so that limn→∞ Mn = ∞. We see, therefore, that also for the general case,
where the system reaches at the timet a different state from that in which it started,
we get a probability of 1 in the dense measurement limit. Thus, we see that the
Zeno effect (Aharonov and Vardi, 1980; Facchiet al., 1999, Itanoet al., 1990;
Misra and Sudarshan, 1977; Simonius, 1978) may be effective in the framework
of quantum field theory.

4. CONCLUDING REMARKS

We show that the Zeno effect may be discussed also in the context of quantum
field theory. We have used in Section 2 the Dyson’s equation and the bubble
example to demonstrate the static Zeno effect, in which the initial and final states
of the system are the same. In Section 3 we have used the open-oyster example and
the Dyson’s equation to demonstrate the dynamic Zeno effect, in which the initial
and final states of the system are different. In this work the Dyson’s equation has
been used to infinitely sum to all orders over then times repetitions of these two
processes. It has been shown in Sections 2 and 3 that the probability amplitudes
to find the final state of the system identical to the initial one in the bubble case,
or different in the open oyster case tend both to unity as the number of repetitions
n becomes large.

We have found in Section 2 that repeating the bubble process a large number
of times in a finite total time results in obtaining a large number (cut) of additional
excited energy states that emerge only because of these repetitions. By this we have
corroborated the same conclusion arrived to by Aharonov and Vardi with respect to
spin rotation. We have found, accordingly, in Section 3 for the open-oyster process
that the absence of any repetition results in the absence of excited state energies.



P1: GUB

International Journal of Theoretical Physics [ijtp] PP856-ijtp-465831 June 17, 2003 9:23 Style file version May 30th, 2002

Quantum Field Theory and Dense Measurement 463

ACKNOWLEDGMENT

I thank L. P. Horwitz for discussions on this subject, and for his review of the
paper.

REFERENCES

Aharonov, Y. and Vardi, M. (1980).Physical Review D: Particles and Fields21, 2235.
Bixon, M. (1982).Chemical Physics70, 199–206.
Cook, R. J. (1988).Physica Scripta T21, 49–51.
Enz, C. (1992).A Course on Many Body Theory Applied to Solid State Physics, World Scientific,

Singapore.
Facchi, P., Klein, A. G., Pascazio, S., and Schulman, L. (1999).Physics Letters A257, 232–240.
Feynman, R. P. (1948).Reviews of Modern Physics20, 2, 367.
Feynman, R. P. and Hibbs, A. R. (1965).Quantum Mechanics and Path Integrals, McGraw-Hill, New

York.
Gelfand, I. M. and Vilenkin, N. Y. (1964).Generalized Functions, Vol. 4, Academic Press, New York.
Gelfand, I. M. and Yaglom, A. M. (1960).Journal of Mathematical Physics1, 48–69.
Giulini, D., Joos, E., Kiefer, C., Kusch, J., Stamatescu, I. O., and Zeh, H. D., Decoherence and the

Appearance of a Classical World in Quantum Theory (1996). Springer-Verlag, Berlin.
Haken, H. (1981).Light, North-Holland Publishing Company, Amsterdam.
Harris, R. A. and Stodolsky, L. (1981).Journal of Chemical Physics74, 4, 2145.
Itano, W. M., Heinzen, D. J., Bollinger, J. J., and Wineland, D. J. (1990).Physical Review A: General

Physics41, 2295–2300.
Kofman, A. G. and Kurizki, G. (1996).Physical Review A: General Physics54, 3750–3753.
Kurizki, G., Kofman, A. G., and Yudson, V. (1995).Physical Review A: General Physics53, R35.
Mahan, G. (1993).Many Particle Physics, 2nd edn., Plenum, New York.
Mattuck, R. D. (1964).Phonons from a many body viewpoint. Annals of Physics27, 216–226.
Mattuck, R. D. (1976).A Guide to Feynman Diagrams in the Many Body Problems, 2nd edn., McGraw-

Hill, New York.
Merzbacher, E. (1961).Quantum Mechanics, 2nd edn., Wiley.
Misra, B. and Sudarshan, E. C. (1977).Journal of Mathematical Physics18, 756.
Pascazio, S. and Namiki, M. (1994).Physical Review A: General Physics50, 6, 4582.
Peres, A. (1989).Physical Review D: Particles and Fields39, 10, 2943.
Peres, A. and Ron, A. (1990).Physical Review A: General Physics42, 9, 5720.
Roepstorff, G. (1994).Path Integral Approach to Quantum Physics, Springer-Verlag, Berlin.
Simonius, M. (1978).Physical Review Letters40, 15, 980.
Wilkinson, S. R., Bharucha, C. F., Fischer, M. C., Madison, K. W., Morrow, P. R., Niu, Q., Sundaram,

B., and Raizen, M. G. (1997).Nature387, 575–577.


